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Abstract
We investigate interfacial structural and fluctuation effects occurring at
continuous filling transitions in 3D wedge geometries. We show that
fluctuation-induced wedge covariance relations that have been reported recently
for 2D filling and wetting have mean-field or classical analogues that apply
to higher-dimensional systems. Classical wedge covariance emerges from
analysis of filling in shallow wedges based on a simple interfacial Hamiltonian
model and is supported by detailed numerical investigations of filling within a
more microscopic Landau-like density functional theory. Evidence is presented
that classical wedge covariance is also obeyed for filling in more acute wedges in
the asymptotic critical regime. For sufficiently short-ranged forces mean-field
predictions for the filling critical exponents and covariance are destroyed by
pseudo-one-dimensional interfacial fluctuations. We argue that in this filling
fluctuation regime the critical exponents describing the divergence of length
scales are related to values of the interfacial wandering exponent ζ(d) defined
for planar interfaces in (bulk) two-dimensional (d = 2) and three-dimensional
(d = 3) systems. For the interfacial height lw ∼ (θ −α)−βw , with θ the contact
angle and α the wedge tilt angle, we find βw = ζ(2)/2(1 − ζ(3)). For pure
systems (thermal disorder) we recover the known result βw = 1/4 predicted
by interfacial Hamiltonian studies whilst for random-bond disorder we predict
the universal critical exponent β ≈ 0.59 even in the presence of dispersion
forces. We revisit the transfer matrix theory of three-dimensional filling based
on an effective interfacial Hamiltonian model and discuss the interplay between
breather, tilt and torsional interfacial fluctuations. We show that the coupling
of the modes allows the problem to be mapped onto a quantum mechanical
problem as conjectured by previous authors. The form of the interfacial height
probability distribution function predicted by the transfer matrix approach
is shown to be consistent with scaling and thermodynamic requirements for
distances close to and far from the wedge bottom respectively.
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1. Introduction

Fluids adsorbed at micropatterned and sculpted solid surfaces may exhibit novel phase
transitions and fluctuation effects compared to wetting behaviour at planar, heterogeneous
walls [1–3]. A striking example of the influence of substrate geometry on fluid adsorption
is provided by a simple wedge geometry [5–12]. At two-phase coexistence, a wedge–vapour
interface is completely filled with liquid provided that the contact angle θ is less than the wedge
tilt angle α. The phase transition from microscopic to macroscopic adsorption as θ → α+

is referred to as filling and may be first-order or continuous. The conditions for continuous
wedge (and also conic) filling are less restrictive than for continuous (critical) wetting at planar
walls [8, 9] and give some hope that large-scale fluctuation effects associated with interfacial
unbinding may be observable in the laboratory. Recent effective interfacial Hamiltonian
studies have shown that fluctuation effects at continuous filling transitions exhibit a number
of intriguing features. For three-dimensional wedge filling transitions critical singularities are
believed to be far stronger than those characteristic of critical wetting transitions reflecting the
anisotropy of soft-mode interfacial fluctuations induced by the wedge geometry. In particular
for pure systems with sufficiently short-ranged forces the mean interfacial height lw (measured
above the wedge bottom) and roughness ξ⊥ are comparable and diverge with the same universal
critical exponent βw = ν⊥ = 1/4 [8, 9]. These predictions are in very good agreement with
Monte Carlo simulation studies of filling within more microscopic Ising and lattice polymer
models [13, 14]. For two-dimensional wedge filling, on the other hand, fluctuation effects
are interesting for a different reason. Studies of fluctuation-dominated filling in both ordered
(pure) [10] and disordered (random-bond) [11] systems show that some observables, such
as the mid-point height probability distribution function, show scaling properties which are
identical with short-ranged critical wetting transitions. The only influence of the wedge
geometry is to shift the effective value of the contact angle from θ to θ − α—a feature
which has been referred to as wedge covariance [12]. This ‘hidden symmetry’ between
wetting and filling appears to restrict the allowed values of the critical exponents at both
2D filling and wetting and leads to new some insights into the properties of critical wetting
transitions.

The present paper focuses on the structural and fluctuation properties of 3D wedge
filling transitions. We begin with a discussion of wedge covariance and illustrate using a
simple interfacial model of filling in shallow wedges that the fluctuation-induced covariance
observed for 2D systems has a mean-field or classical precursor for wetting and filling in
systems with short-ranged forces. Thus if lπ (θ) denotes the mean-field result for the contact
angle dependence of the critical wetting layer thickness, then in the wedge geometry the
corresponding mean-field result for the mid-point height at bulk coexistence is

lw(θ, α) = lπ (θ − α). (1)

The predictions of the interfacial model are supported by a detailed numerical study of filling
in a Landau-like density functional model that indicate this classical covariance is obeyed for
both shallow and more acute wedges. The implications of classical wedge covariance for the
structure of interfacial models of short-ranged filling and wetting are discussed. In the second
part of our paper we turn our attention to fluctuation effects at 3D wedge filling and present a
general scaling argument that relates the values of the critical exponents for 3D wedge filling
to the wandering exponent of planar, two-dimensional and three-dimensional fluid interfaces.
Thus, for example the critical exponent βw is identified as

βw = ζ(2)

2(1 − ζ(3))
(2)
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where ζ(d) is the standard wandering exponent for a planar-like interface in a d-dimensional
bulk system. Our expressions recover the values quoted above for pure systems, corresponding
to thermal fluctuations, and also allow us to discuss 3D filling in disordered systems. We also
discuss the crossover from three-dimensional to two-dimensional wedge filling as one lowers
the number of dimensions of translational invariance along the wedge. The change in the nature
of fluctuation effects and critical singularities in this wedge compactification process highlights
a remarkable numerical coincidence concerning the value of the wandering exponent for planar
interfaces at the lower marginal dimension for wedge filling. In the final part of our study we
focus on 3D filling in pure systems and address some problems that have been highlighted
concerning the transfer matrix analysis of a pseudo-one-dimensional effective Hamiltonian
model. We argue that problems associated with the choice of the appropriate measure in the
functional integral can be avoided if, in addition to breather-mode excitations of the interface,
we also allow for tilt and torsional degrees of freedom. This more accurate formulation of
the theory allows us to determine the universal scaling function associated with the density
profile in the wedge. The form of this function is shown to have the correct short-distance and
large-distance behaviour dictated by scaling theory and macroscopics respectively.

2. Background theory

2.1. Thermodynamics and critical exponents

Consider a 3D wedge formed from the intersection of two smooth, planar walls that meet
at angles α to the z = 0 plane forming a wedge with opening angle π − 2α. The parallel
displacement vector in the z = 0 plane is written as x = (x, y)with Cartesians (x, y)measuring
distances across and along the wedge respectively. Thus the height of the wall above the z = 0
plane is described by a height function zw(x) = tan α|x |. We suppose that the wedge is
in contact with a three-dimensional bulk vapour at sub-critical temperature T and chemical
potentialµ tuned to bulk two-phase coexistenceµ = µsat(T )−. Provided that the contact angle
θ(T ) of the sessile drop (defined for the planar wall–fluid interface) is less than ninety degrees
the wedge preferentially adsorbs a volume of liquid near its bottom. Partial and complete filling
refer to situations where the adsorption is microscopic and macroscopic respectively. The
separatrix between partial and complete filling follows from simple thermodynamic arguments
first discussed by Concus and Finn [4] some thirty years ago (see also [5] and [6]). Let V denote
the accessible volume of the fluid and A, L the area and length of the wedge respectively. The
total grand potential � contains the macroscopic contributions

� = −pV + σwv A + fw L (3)

where σwv is the surface tension of the wall–vapour interface and fw is the excess wedge free
energy. Now suppose we are at bulk coexistence and imagine that the wedge is filled to a
height lw (see figure 1). Macroscopically the liquid–vapour interface must be flat and hence
fw must contain a thermodynamic contribution

fw = 2σlv(cosα − cos θ)lw

sin α
(4)

where σlv is the liquid–vapour tension and we have used Young’s equation. It follows that
for θ < α the free energy can be lowered by completely filling the wedge. For θ > α,
on the other hand, the equilibrium value of lw must be finite and arises from a balance
between thermodynamics and internal energy (intermolecular forces) or entropic (fluctuation)
contributions. Thus by either increasing the tilt angle at constant T or increasing the
temperature at constant angle (assuming the usual scenario where the contact angle decreases
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Figure 1. A schematic illustration of a typical interfacial configuration in the 3D wedge geometry
and the typical diverging length scales at the filling transition. Note that lw = 〈l0〉.

with temperature) one can induce a transition from partial to complete filling at a temperature
Tfill satisfying

θ(Tfill) = α. (5)

Filling transitions may be either first- or second-order corresponding to the discontinuous
or continuous divergence of the mean interfacial height lw respectively. Importantly, the
conditions for continuous filling are less restrictive than for continuous wetting transitions and
wedges made from walls that exhibit first-order wetting (at some higher temperature Twet)
may still exhibit continuous filling [8, 9]. The most important diverging length scales which
characterize the transition are the mean mid-point height lw, the perpendicular correlation
length ξ⊥ at the mid-point defined from the root mean square variance, and the correlation length
ξy describing fluctuations along the wedge. Correlations across the wedge are described by a
length scale which is trivially related to the mean height: ξx ∼ lw cot α. At bulk coexistence
critical exponents for the divergence of these length scales are identified according to

lw ∼ t−βw , ξ⊥ ∼ t−ν⊥ , ξy ∼ t−νy (6)

where the temperature-like scaling field t ∝ (Tfill − T ) ∝ (θ − α). The phenomenology is
very similar for the case of 2D wedge filling except that there is no analogue of the correlation
length ξy .

2.2. 3D wedge filling in pure systems

A suitable starting point for the evaluation of the critical exponents is an effective interfacial
Hamiltonian model based on a collective coordinate l(x)measuring the height of the unbinding
interface above the z = 0 plane. At least for shallow tilt angles α ∼ tan α, the appropriate
effective Hamiltonian is a natural generalization of the standard capillary-wave model used to
study planar wetting and we write [7]

H [l] =
∫

dx
{



2
(∇l)2 + W (l − α|x |)

}
(7)
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where 
 is the stiffness coefficient of the unbinding interface which, for isotropic fluids,
we can identify with the surface tension σlv. The model is not truly microscopic and is only
valid for length scales much larger than the bulk correlation length. The binding potential W (l)
describes the influence of intermolecular forces and decays at large distances as W (l)∼ −al−p.
The Hamaker constant a is positive in the temperature region of interest whilst the value of
exponent p depends on the specific range of the forces with p = 2, 3 for non-retarded and
retarded van der Waals forces respectively. It is also possible to modify the model to include the
effect of quenched disorder but for the moment we concentrate on pure systems with thermal
fluctuations. Minimization of the capillary-wave-like model (7) determines the following
mean-field values of the critical exponents for 3D filling [8]:

βw = 1

p
, ν⊥ = 1

4 , νy = 1

2
+

1

p
. (8)

Thus fluctuation effects are extremely anisotropic at wedge filling with ξy 	 ξx and are
dominated by pseudo-one-dimensional local translations in the height of the filled region
along the wedge [8, 9]. We refer to these as ‘breather-mode’ excitations. From the values of
the above critical exponents it is clear that mean-field theory is only valid for intermolecular
potentials with p < 4 for which ξ⊥ 
 lw. The filling fluctuation (FFL) regime corresponds to
potentials with p > 4 and to study this Parry et al [8, 9] introduced a pseudo-one-dimensional
wedge Hamiltonian which accounts only for the breather-mode excitations:

Hw[l0] =
∫

dy

{

l0

α

(
dl0

dy

)2

+ V (l0)

}
(9)

where l0(y) ≡ l(0, y) > 0 is the local height of the interface above the wedge bottom and
lw = 〈l0(y)〉. The model is considered valid only for small wavevectors ky 
 kmax

y ∼ ξ−1
x .

However, because the fluctuations at filling are strongly anisotropic the relevant scaling
combination ξykmax

y diverges in the scaling limit and the cut-off does not determine universal
quantities. The most important feature of this effective model is the presence of a bending term
resisting fluctuations along the wedge which is proportional to the local interfacial height. At
bulk coexistence the wedge potential V (l0) has the form

V (l0) = 


α
(θ2 − α2)l0 + Cl1−p

0 (10)

and for θ > α has a minimum located at the mean-field value of lw. Notice that the first term in
the wedge binding potential is the small-α approximation to the thermodynamic term fw and is
proportional to the linear, temperature-like scaling field t . The transfer matrix analysis of the
one-dimensional model will be considered later. Here we point out two related interpretations
of the model which give the desired classification of the allowed critical singularities without
the need for explicit calculations. Both arguments will play a role in our later discussions.
To begin we observe that the bending energy term is invariant under a renormalization group
rescaling

y → y ′ = y

b
, l0 → l ′0 = l0

bζw
(11)

with wedge wandering exponent ζw = 1/3. Under this transformation the linear scaling field
t and wedge Hamaker constant C rescale to t ′ and C ′ with

t ′ = b4/3t, C ′ = b(4−p)/3C. (12)

Thus as anticipated the intermolecular forces are relevant and irrelevant for p < 4 and p > 4
respectively. The temperature-like scaling field is always relevant and from its rescaling and
the value of ζw we can identify the values of the exponents in the FFL regime as

βw = 1
4 , ν⊥ = 1

4 , νy = 3
4 . (13)
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Equivalently we may say that in the FFL the diverging lengths scale according to

lw ∼ ξ⊥ ∼ ξ1/3
y (14)

which shows the dramatic influence the wedge geometry has on the fluid interfacial properties
near the filling phase boundary. Closely related to this simple rescaling analysis is the
construction of an effective potential. Heuristically we may imagine that the equilibrium
interfacial height lw follows from minimization of an effective wedge potential which takes
into account the contribution arising from the bending free energy. Noting the scaling relation
between lw, ξ⊥ and ξy together with the first term in the wedge Hamiltonian it is natural to
suppose that the effective potential has the form

Veff(l0) = V (l0) + Dl−τw
0 (15)

where τw = 2/ζw − 3 and the constant D ∝ 
. Thus for the present case of thermal disorder
τw = 3 and the critical behaviour falls into two regimes for p < 4 and p > 4 depending
on whether intermolecular force or the bending energy is the leading order correction to the
thermodynamic term.

It is straightforward to generalize these ideas to a d-dimensional wedge which has
translational invariance in dy = d − 2 dimensions along the wedge. As we shall see
consideration of the ‘compactification’ from a three- to a two-dimensional wedge highlights
some interesting properties of the wandering exponent for planar interfaces. Breather-mode
excitations do not lead to large-scale interfacial roughness for d > 4 and mean-field theory is
valid. For d < 4 we find two possible fluctuation regimes corresponding to mean-field-like
and fluctuation-dominated behaviour. The FFL occurs for sufficiently short-ranged potentials
with p > 2(1/ζw − 1) with a generalized wedge wandering exponent

ζw = 4 − d

3
(16)

valid for 2 < d < 4. The critical exponent for the divergence of the interfacial height in the
FFL regime follows as

βw = 4 − d

2(d − 1)
(17)

and recovers the 1/4 power law for the three-dimensional wedge. Intriguingly the result (17)
has the correct two-dimensional limit βw = 1 for filling with thermal fluctuations. We shall
return to this later but first focus on the 2D limit in more detail.

2.3. Fluctuation-induced wedge covariance in 2D

Interfacial Hamiltonian studies [10–12] reveal that the fluctuation regimes for 2D filling
are different to those for 2D critical wetting. Nevertheless there appears to be a profound
connection between the fluctuation-dominated regimes for each transition. Recall that critical
wetting refers to the continuous unbinding of the liquid–vapour interface (say) from a planar
wall as the temperature is increased to the wetting temperature Twet at bulk coexistence. The
vanishing of the contact angle θ as T → Twet is accompanied by the divergence of the mean
interfacial thickness lπ , roughness ξ⊥ and transverse correlation length ξ‖. More detailed
information concerning the local height fluctuations is contained in the one-point interfacial
height probability distribution function (PDF) Pπ (l; θ)where, in preparation for our discussion
of wedge covariance,we have written the PDF in terms of the contact angle. Wetting transitions
are characterized by highly anisotropic fluctuations arising from the random-walk or capillary-
wave-like motion of the interface which are quantified by the scaling relation ξ⊥ ∼ ξ

ζ(d)
‖ with

ζ(d) the wandering exponent for a free interface (see later). At bulk coexistence the critical
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exponents for critical wetting describing the asymptotic divergence of these length scales are
identified from

lπ ∼ (Twet − T )−βs, ξ⊥ ∼ (Twet − T )−ν⊥ , ξ‖ ∼ (Twet − T )−ν‖ . (18)

Generically, fluctuation effects at critical wetting fall into three regimes depending by the range
of the intermolecular forces [15–19]. These are mean-field (MF), weak-fluctuation (WFL) and
strong-fluctuation (SFL) scaling regimes. The SFL regime represents the universality class of
critical wetting with sufficiently short-ranged forces p > 2(1/ζ(2)− 1) and is characterized
by large fluctuations lπ ∼ ξ⊥ and universal critical exponents. In two dimensions rather
general random-walk-based arguments predict that the critical exponents in the SFL regime
are explicitly related to the value of the wandering exponent. In particular for the interfacial
height it is believed that [17, 18]

βs = ζ(2)

1 − ζ(2)
(19)

which is certainly obeyed for pure (ζ(2) = 1/2) and random-bond systems (ζ(2) = 2/3).
For 2D filling, on the other hand, interfacial Hamiltonian studies show there are only two

fluctuation classes corresponding to mean-field and fluctuation-dominated regimes for which
lw 	 ξ⊥ and lw ∼ ξ⊥ respectively [10–12]. In general the critical exponents describing
mean-field filling and mean-field critical wetting transitions are unrelated. Also the filling
fluctuation (FFL) regime, representing the universality class of systems with short-ranged
forces, is broader than the SFL regime for critical wetting and occurs for p > (1/ζ(2) − 1).
Simple scaling arguments indicate that within the FFL regime the interfacial height diverges
with a critical exponent

βw = ζ(2)

1 − ζ(2)
(20)

which is in agreement with model calculations in pure [10] and impure [11] systems. Wedge
covariance [12] refers to the ‘empirical’ observation emerging from effective interfacial
Hamiltonian and Ising model studies that the equality of the critical exponents also extends to
the full scaling properties of the respective one-point PDFs. In brief, wedge covariance states
that for systems with short-ranged forces, at bulk coexistence and in the scaling limit, the
interfacial height PDF at the wedge mid-point Pw(l; θ, α) is identical to the analogous PDF for
strong-fluctuation regime critical wetting at a planar wall–fluid interface but with an effective
shifted contact angle θ → θ − α with α the wedge tilt angle. Thus if Pπ (l; θ) denotes the
critical wetting interfacial height PDF written in terms of the contact angle, wedge covariance
implies

Pw(l; θ, α) = Pπ (l; θ − α) (21)

which is valid in the critical regime θ − α → 0. From this it follows that the equilibrium
mid-point height near a fluctuation-dominated filling transition satisfies

lw(θ, α) = lπ (θ − α) (22)

where, in an obvious notation, lπ (θ) denotes the SFL regime critical wetting film thickness
expressed in terms of the contact angle. Interestingly, the covariance (21) necessarily leads
to the exponent identifications (19), (20) whilst a third relation between the FFL wedge free
energy and SFL point tension τ (θ) leads to the new result for wetting [12]

lπ (θ) = −τ
′(θ)

2σlv
. (23)



2522 M J Greenall et al

This expression leads directly to the identification of the critical singularity associated with the
point tension consistent with exact Ising model calculations [20] and a more general conjecture
due to Indekeu and Robledo [21]. We emphasize that the above covariance relations, originally
noted from interfacial Hamiltonian studies of filling in shallow wedges (in pure and impure
systems), appear to be rather robust. For pure systems they are also obeyed by a drumhead
interfacial model of filling in more acute wedges [22] and, most importantly, are consistent
with exact [23] and numerical studies [24] of filling in the square lattice Ising model with tilt
angle α = π/4.

3. Classical wedge covariance for filling in shallow wedges

The standard fluctuation theory of wetting at planar wall–fluid interfaces is based on analysis
of effective interfacial Hamiltonian models which describe the fluctuations of a collective
coordinate l(x)measuring the local height of the interface from the wall. This coarse-grained
description is valid at length scales much bigger than the bulk correlation length and, in its
simplest form, is written as

Hπ [l] =
∫

dx
{



2
(∇l)2 + W (l)

}
(24)

where, as described earlier, 
 is the stiffness coefficient of the unbinding interface and W (l)
is the binding potential which, in general, accounts for the direct influence of intermolecular
forces. We shall focus on isotropic fluid interfaces for which 
 can be identified with the
surface tension σlv.

For systems with short-ranged forces the binding potential describes not so much the range
of the intermolecular potentials but the decay of perturbations in the local microscopic order
parameter (density, magnetization) and is usually taken to have the form, at bulk coexistence,

W (l) = −ae−κl + be−2κl (25)

whereκ is the inverse bulk correlation length of the wetting phase. The temperature dependence
of the coefficients a, b is crucial at mean-field level. The leading order term vanishes at the
mean-field wetting temperature so a ∝ (T MF

wet − T ) whilst b must be positive finite at Twet

to ensure stability and is usually taken to be constant. The structure of the binding potential
can be inferred by comparison with more microscopic Landau-like mean-field theories. More
formally it can derived from a constrained fluctuation sum as in the approach of Fisher and Jin
which also leads to the presence of a position-dependent stiffness coefficient [25, 26].

At mean-field level the equilibrium thickness lπ of the interface follows from minimization
of W (l) whilst the contact angle θ can be identified from
θ2/2 = −W (lπ ). Thus for systems
with short-ranged forces the mean-field results are

κlπ = ln 2b/a, a = √
2
bθ (26)

corresponding to critical exponents βs = 0(ln) and αs = 0. Written in terms of the contact
angle the equilibrium film thickness of the critical wetting layer is therefore

κlπ (θ) = − ln

√



2b
θ (27)

which will be our initial point of reference for the wedge calculation.
For shallow wedges corresponding to tilt anglesα ∼ tan α the natural generalization of the

planar model is the effective Hamiltonian (7) which simply assumes the interfacial interaction
with the wall is controlled by the local relative height variable l̃ = l −α|x |. Note that the mean-
field analysis is essentially independent of dimension since it assumes translational invariance
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along the wedge. The Hamiltonian is minimized subject to the appropriate boundary condition
l̃ → lπ as |x | → ∞ and yields the Euler–Lagrange equation


l ′′(x) = W ′(l − α|x |). (28)

It is convenient to write this in terms of the local relative height l̃ = l − α|x | which, making
analogy with classical mechanics, exploits the local Galilean invariance of the Euler–Lagrange
equation. On integration one obtains the ‘energy’ equation




2
(|l ′(x)| − α)2 = W (l − α|x |) (29)

whereW (l) = W (l)− W (lπ ). Thus at the wedge mid-point one finds the simple expression
for the local height of the filling film




2
α2 = W (lw). (30)

As pointed out by Rejmer et al [7] this equation has a very elegant graphical interpretation
which demonstrates that for quite arbitrary choices of binding potential the wedge undergoes
a filling transition when θ(T ) = α, in precise accord with thermodynamic arguments. Now
consider the specific case of short-ranged forces with the binding potential (25). Substitution
determines the mid-point height as

κlw(θ, α) = − ln

√



2b
(θ − α). (31)

This not only identifies the logarithmic divergence of the film thickness at the filling transition,
βf = 0(ln), but also reveals that the mean-field theory shows a ‘classical’ analogue of wedge
covariance observed in the 2D calculations:

lw(θ, α) = lπ (θ − α). (32)

In other words, for systems with short-ranged forces, the influence of the wedge geometry as
manifest in the mid-point height is to shift the effective value of the contact angle. A similar
property extends to the whole equilibrium profile which satisfies

l(x)− α|x | = lπ (θ − α + |l ′(x)|) (33)

and smoothly interpolates from lπ(θ−α) to lπ (θ) as |x | increases. Profile covariance indicates
that the height dependence of the meniscus contains information about the contact angle
dependence of the planar wetting film lπ (θ) and vice versa.

Classical wedge covariance is also manifest in the Gaussian fluctuations about the mean-
field solutions. This is most easily interpreted for the 2D wedge. Consider for example the
mean-field expression for the connected height–height correlation function

Sw(0, x) = 〈(l(0)− 〈l(0)〉)(l̃(x)− 〈l̃(x)〉)〉 (34)

and note that Sw(0, 0) = ξ2
⊥ identifies the mid-point roughness. The correlation function can

be easily obtained from solution to the appropriate Ornstein–Zernike-like equation yielding

Sw(0, x) = |l̃ ′(x)|
2W ′(lw)

(35)

where, for convenience, we have set kBT = 1. For systems with short-ranged forces the
explicit result for the mean-field roughness at the wedge mid-point satisfies

ξ⊥(θ, α)2 = 1

2κ
(θ − α)
. (36)
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This can be compared with the result pertinent to critical wetting at the planar wall–fluid
interface which can be obtained by simply setting α = 0,

ξ⊥(θ)2 = 1

2κ
θ
(37)

implying the classical wedge covariance relation

ξ⊥(θ, α) = ξ⊥(θ − α) (38)

for Gaussian fluctuations about the mean-field solution.
For higher-dimensional wedges the actual mid-point roughness ξ⊥ is no longer covariant

because of the breather-mode excitations along the wedge. For such dimensions the quantity
analogous to the roughness which shows covariance is simply the zeroth moment of the height–
height correlation function

Sw(0, x) =
∫

dy12 〈(l(0)− 〈l(0)〉)(l̃(x)− 〈l̃(x)〉)〉 (39)

where y12 is the relative separation of the two points along the wedge. This obeys the same
expression (35) as quoted above [8] and is therefore covariant.

We emphasize that classical covariance is not a general feature of the mean-field theory
of filling and critical wetting. Within a more general description based on a binding potential

W (l) = −al−p + bl−q (40)

the filling and critical wetting exponents are distinct:

βw = 1

p
, βs = 1

q − p
. (41)

This automatically rules out the possibility of (classical) wedge covariance for binding
potentials of the form (40). Nevertheless the results presented above showing wedge covariance
for short-ranged forces do generalize to the class of potentials

W (l) = −aω(l) + bω(l)2 (42)

where ω(l) corresponds to an arbitrary choice of monotonically decaying function. Choosing
ω = e−κl we obtain the usual short-ranged binding potential whilst settingω = l−p one obtains
a binding potential describing a particular type of multicritical wetting transition with q = 2 p.
Repeating the analysis above we obtain for the planar critical wetting and mid-point wedge
filling interfacial heights

ω(lπ ) =
√



2b
θ, ω(lw) =

√



2b
(θ − α), (43)

which immediately implies the wedge covariant relation (32). A little more algebra shows that
the roughnesses also obey covariance implying that the mean-field PDFs are identical provided
that we map θ → θ − α. We refer to the class of potentials (42) as classical wedge covariant
binding potentials. Of course, only for the short-ranged case ω = e−κl do we anticipate such
potentials to have any physical significance. Nevertheless they do point to an important feature
of the present analysis. It is easy to demonstrate that the wedge covariant potentials (42) all
describe planar critical wetting transitions with vanishing specific heat exponent αs = 0. This
mirrors precisely the situation for the fluctuation-induced non-classical covariance since for
ζ � 1/2 the value of the specific heat exponent in the SFL regime is αs = 0. This covers both
cases, ζ = 1/2 and ζ = 2/3 in 2D, where non-classical covariance is known to occur and it
is tempting to speculate that the vanishing of the specific heat exponent either at mean-field
level or beyond plays a key role for classical and non-classical covariance respectively.
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The prediction of classical wedge covariance shows that this hidden relation between filling
and wetting for special types of force is not necessarily a fluctuation-induced phenomenon.
Having said that, we feel care should be taken in saying that the classical covariance is the
underlying origin of non-classical covariance. Whilst they are certainly related it is far from
obvious why the covariant relation (32) obeyed for binding potentials describing mean-field
critical wetting with αs = 0 should remain unaltered in the presence of large-scale fluctuation
effects which renormalize the value of the exponent βs whilst leaving αs unchanged. In view
of this we treat classical covariance as a prediction which should be tested in more microscopic
models of wetting and filling. Since the binding potential (25) is believed to describe wetting
in systems with short-ranged forces we turn attention to numerical studies of filling based on
a Landau-like density functional model. This will also allow us to test any limitations arising
from the shallow wedge approximation implicit in the interfacial model.

4. Wedge filling within Landau theory

For our Landau theory study we resort to a magnetic terminology rather than the fluids-
based one considered earlier. At mean-field level the equilibrium order parameter m(r) is
translationally invariant along the wedge so we can restrict ourselves to magnetization profiles
in a two-dimensional space r = (x, z)with x the coordinate across the wedge. The free-energy
functional for the infinite wedge that we wish to minimize is

F[m] =
∫

V
dr

{
1

2
(∇m)2 − t

2
m2 +

u

4
m4 − hm

}
(44)

where the volume of integration is restricted to z � tan α|x | for every x . The parameter t
measures the deviation from the bulk critical temperature (which is always finite) whilst u > 0
for stability. The bulk field h = 0− so the bulk magnetization is negative. The temperature
dependence of the equilibrium profiles can be eliminated by measuring the magnetization in
units of the bulk spontaneous magnetization m0(t) = √

t/u and need not be specified further.
Rather than use a local surface field h1 and enhancement parameter c we use fixed boundary
conditions which set the surface magnetization to a positive value m(x, tan α|x |) = m1 for
all x . This is equivalent to h1 → ∞, c → ∞ limit with m1 = h1/c fixed in the model of
Nakanishi and Fisher [27]. This choice ensures that the wetting transition pertinent to the planar
wall–down spin interface is always second-order. In the planar limit α = 0 the model can be
solved analytically and exhibits a critical wetting transition when the surface magnetization

mwet
1 = m0 (45)

which allows us to induce wetting (and filling in the wedge) by either increasing m1 at fixed t
or vary t at fixed m1. We have chosen to vary m1 at fixed temperature since this keeps the bulk
magnetization and correlation length ξb = 1/κ = (2t)−1/2 fixed. The contact angle within
this model can be calculated analytically:

cos θ = 3m1

2m0

(
1 − m2

1

3m2
0

)
(46)

so near the wetting transition, θ ∝ (m0 − m1)/m0, where (m0 − m1)/m0 may be regarded as
the temperature-like linear scaling field. Thus in the wedge geometry it is straightforward to
convert the numerically determined value of the surface magnetization at filling phase boundary
mfill

1 into a contact angle θ . We also remark that near the filling transition the scaling field
θ − α is equivalent to (mfill

1 − m1)/m0.
We have numerically minimized a discretized version of the continuum Landau free-energy

functional in a number of finite-size geometries with boundary conditions chosen to mimic the
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Figure 2. Typical capped wedge geometry used for the Landau numerical calculations. The
magnetization has a fixed value m1 at the wedge boundaries and the bulk value m0 at z = L1. Here,
α = 45◦ and L1 = L2 ≈ 30ξb. Two solutions corresponding to either side of a filling transition
are shown: the lower interface for m1/m0 = 0.5 and the upper interface for m1/m0 = 0.55.

bulk as closely as possible. We considered a double-wedge geometry with opposing surface
magnetizations on the top and bottom wedges and also a capped wedge geometry (see figure 2)
with both free and fixed boundary conditions at z = L1. The results for the phase boundary and
logarithmic growth of the filling layer are the same in all of these geometries. After testing our
algorithm on a number of standard one- and two-dimensional problems including the Laplace
and Poisson equations we first applied the minimization scheme to the Landau free-energy
functional with α = π/4. We found that, as the system was made larger and the discretization
finer, our results stabilized and the phase boundary could be made arbitrarily close to the
theoretical prediction. The smallest system with the roughest discretization that produced a
clear logarithmic growth and a transition value of θ within 0.1◦ of α was L1 = L2 ≈ 30ξb

with a distance between the grid points of approximately ξb/2. Taking this as a starting point
we increased the number of points on the grid and reduced the grid spacing in the vertical
direction, producing a more open wedge of the same depth, with the same discretization in
the horizontal direction and a finer discretization in the vertical. The number of points and
the vertical scale were adjusted to produce the various wedge angles. A similar procedure
was used to produce acute wedges, but here the horizontal distance L2 was kept constant and
the wedge made gradually deeper. This approach allowed us to study filling in wedges with
a fairly wide range of tilt angles, up to a maximum of about 70◦, in a reasonable amount of
CPU time. The effect of the variable discretization can be seen in figure 3. For the most open
wedges, θ and α agree to four significant figures as the fine discretization in the direction of
the film growth, whilst for the very acute wedges θ and α may differ by as much as 0.5◦.

The results of our study are presented in figures 3 and 4. In figure 3 we present data for
the numerically determined phase boundary for tilt angles between 15◦ and 75◦ which is in
excellent agreement with the theoretical prediction θ = α. We have also studied the meniscus
profile defined as the surface of isomagnetization m = 0 (see figure 4). For wedges with tilt
angles α � π/4 there is clear evidence for the logarithmic growth of the mid-point filling
height

κlw = A ln(mfill
1 − m1) + C (47)
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Figure 3. A plot of the contact angle at the filling transition, θ , against the wedge angle, α. The
error bars on θ lie within the circles. The continuous line corresponds to the theoretical prediction
of equation (5).

Figure 4. A plot of the reduced mid-point interface height, lw/ξb, against the reduced surface
magnetization, m1/m0, for a range of α between approximately 15◦ (bottom) and 75◦ (top). The
dashed line corresponds to α = 45◦.

with a universal, angle-independent constant A = 1.02 ± 0.04 consistent with the shallow
wedge limit A = 1. The constant C is non-universal as is the size of the asymptotic critical
regime which decreases with increasing wedge angle. Nevertheless even for the most acute
angles, we consider that there is no evidence that the amplitude A differs from unity. More
precisely for all wedge angles where there is clear logarithmic growth of the filling layer the
amplitude of the logarithmic growth is consistent with A = 1. In other words, even away from
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Figure 5. Substrate–interface interaction paths (dashed lines) for the wedge filling transition in the
model of Rejmer et al [7].

the shallow wedge limit the film diverges as

κlw(θ, α) ∼ − ln(θ − α) (48)

and behaves, in the critical regime, precisely like lπ (θ − α). This observation is certainly
aesthetically appealing. In 2D, all results point to non-classical covariance for both shallow
and more acute wedges as indicated by exact Ising studies for the right-angle corner and also
a drumhead model calculation with arbitrary wedge angle α. The Landau theory numerics,
coupled with the interfacial model studies for the shallow wedge, show that this is also the
case for classical covariance.

Given that the interfacial model (7) is only valid for shallow wedges it is natural to enquire
whether one can explain the Landau theory results using a generalized interfacial model valid
for more acute wedges. We finish this section by showing that a very reasonable, and for
many purposes satisfactory, drumhead-like interfacial model proposed by Rejmer, Dietrich
and Napiórkowski (RDN) [7] does not fulfil this requirement. The model is a straightforward
generalization of the shallow wedge Hamiltonian but is amended in two ways. First the square
gradient term multiplying the tension is replaced by the correct expression for the total area of
the liquid–vapour interface. This is familiar from older drumhead-like capillary-wave models
and ensures that the model recovers the correct filling phase boundary θ = α. Secondly
they propose replacing the relative vertical height from the wall to the interface, appearing in
the generalized binding potential contribution, by the normal distance to the closest wall (see
figure 5). Thus the RDN model for the 2D/3D wedge is given by [7]

HRDN =
∫

dx
{



[√
1 + (∇l)2 − 1

]
+ secαW (cos α [l − ψ(x)])

}
(49)

where, as earlier, l = l(x) denotes the vertical height relative to the x = 0 plane and
ψ(x) = tan α|x |. This assumption is certainly valid far from the wedge bottom where the
interface and wall are parallel. One potentially unsatisfactory feature of it is that points on the
wall at distances |x | < lw sin α cosα do not contribute to the binding potential, i.e. the interface
is blind to the wedge bottom. The mean-field equation for the mid-point height, obtained by
minimizing the Hamiltonian and integrating once, is

σlv(cos θ − cosα) = W (lw cosα) (50)

which is the analogue of the shallow wedge expression (28). In this way it is straightforward
to see that the wedge filling transition occurs at the correct thermodynamic phase boundary
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θ = α and that the critical exponents for continuous filling are independent of the wedge
angle. Now consider the case of short-ranged forces modelled by the binding potential (25).
According to the above drumhead model the asymptotic divergence of the mid-point height is
given by

κlw ∼ − secα ln(θ − α) (51)

and contains a geometrical amplitude factor secα which is not consistent with the Landau
theory numerics. In other words the RDN model does not give the correct, wedge covariant
result (48).

The failure of the RDN model to account for classical wedge covariance in more acute
wedges is a surprising result. The model is certainly plausible and would appear to be the
simplest possible generalization of the shallow wedge model. Indeed when considered beyond
mean-field theory using transfer matrix methods, the RDN model does predict non-classical
wedge covariance for 2D systems with strictly short-ranged forces! We emphasize that there
is no mystery here; non-classical wedge covariance is a fluctuation-induced phenomenon for
which the precise form of the binding potential (determining the way in which short-range
forces are modelled) is irrelevant. In the presence of large fluctuations with lw ∼ ξ⊥ all
points on the interface can feel the influence of the wall through collisions with it. Thus in
the 2D FFL regime it is sufficient to use a binding potential with a simple square well shape
representing pure contact forces. This contrasts with classical wedge covariance which reflects
the precise form of the underlying interfacial Hamiltonian model. At mean-field level there are
no fluctuation effects that take the interface close to the wall and even for short-ranged forces
the manner in which one models the large-distance exponential tail of the binding potential
is crucial. Clearly the assumption that the wall–interface interaction occurs via the normal
distance to points on the closest wall is incorrect. The absence of a secα prefactor in the
Landau numerics (48) indicates that the correct measure of this is more akin to an effective
local, vertical interaction similar to the shallow wedge model. This observation may well have
ramifications for the construction of interfacial models of 3D wetting and filling in systems
with short-ranged forces.

5. 3D wedge filling and the interfacial wandering exponent

5.1. Interfacial wandering and criticality at complete wetting

In the treatment of fluctuation effects at 3D wedge filling presented in the introduction there
appears to be little connection between the values of the critical exponents and the interfacial
wandering exponent ζ(d) defined for a planar-like fluid interface. The value of the wandering
exponent ζ(d) is crucial for discussions of depinning as well as complete and critical wetting
transitions. Interfacial fluctuation effects at such transitions are isotropic in the d−1 dimensions
parallel to the interface and the wandering exponent describes the scaling relation between the
roughness ξ⊥ and transverse or parallel correlation length ξ‖ [17]:

ξ⊥ ∼ ξ
ζ(d)
‖ . (52)

In general the value of ζ(d) depends on the dimensionality of space and the qualitative type
of disorder. For pure systems, thermal fluctuations lead to interfacial roughness for d � 3 and
we have the well-known result [17]

ζ(d) = 3 − d

2
(53)

where for the marginal case, the identification ζ(3) = 0 corresponds to ξ⊥ ∼ √
ln ξ‖. The

lower critical dimension for phase separation is dL = 1 at which ζ(d) = 1. The wandering
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exponent is altered in the presence of quenched impurities and it is usual to distinguish between
random-field and random-bonddisorder. Random fields induce interfacial roughness for d < 5
and general scaling arguments lead to the result ζ(d) = (5 − d)/3 [17, 28, 29] implying
a lower critical dimension at dL = 2. For random bonds, on the other hand, the explicit
dimension dependence of ζ(d) is not known. Near the upper marginal dimension, d = 5,
approximate functional renormalization group calculations of an interfacial model lead to the
linear relation [17, 30]

ζ(d) ≈ 0.2083(5 − d). (54)

This is believed to be accurate even far from the marginal dimension since for d = 2 it
is close to the known exact result ζ(2) = 2/3 [31]. In three dimensions numerical results
suggest ζ(3) ≈ 0.44 [32], slightly higher than the value predicted by the linear relation (54).
The lower critical dimension for interfacial wandering induced by random-bond disorder is
dL = 5/3 [33], below which they are unstable with respect to thermal fluctuations.

The wandering exponent explicitly determines the fluctuation-dominated values of the
critical exponents at the complete wetting transition. Complete wetting is pertinent to planar
wall–vapour interfaces (say) with vanishing contact angle and refers to the divergence of
the mean wetting layer (of liquid) thickness l, roughness ξ⊥ and transverse correlation
length ξ‖ as the bulk two-phase coexistence is approached. Writing the bulk ordering field
h ∝ (µsat(T )− µ) we define critical exponents according to the power laws

l ∼ h−βco
s , ξ⊥ ∼ h−νco

⊥ , ξ‖ ∼ h−νco
‖ . (55)

The general theory of complete wetting is rather fully developed and can be understood using
effective interfacial Hamiltonian models [34, 35]. The usual starting point for the discussion
of fluctuation regimes is the continuum model (7) with a binding potential

W (l) = hl + al−p (56)

where the Hamaker constant a is positive. Transfer matrix and renormalization group studies
show that the critical behaviour falls in two scaling regimes [34]. The values of the critical
exponents in these regimes can also be understood using a simple effective potential picture.
As noted by Lipowsky and Fisher [35] the form of the bending energy in the interfacial model
suggests that fluctuation effects can be accounted for by minimizing an effective potential

Weff (l) = hl + al−p + bl−τ (57)

where τ = 2(1/ζ(d)−1). The complete wetting transition is therefore fluctuation-dominated,
belonging to the so-called weak-fluctuation (WFL) regime, for τ < p and leads to the critical
exponent identification

βco
s = ζ(d)

2 − ζ(d)
(58)

with βco
s = νco

⊥ = ζ(d)νco
‖ . This approach together with the final exponent identification will

be important in our discussion of filling in ordered and disordered systems.

5.2. From complete wetting to filling

Complete wetting and 3D filling share a number of properties. Both transitions exhibit
two fluctuation regimes reflecting the fact that there is always a relevant thermodynamic
contribution to the appropriate effective potential. The difference between the values of
the fluctuation repulsion exponents τw and τ can be traced directly to the extra length scale
dependence in the effective stiffness at filling. A relation between these exponents can therefore
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Figure 6. The vapour–liquid interface at complete wetting in a constrained geometry across the
x-axis. See the text for an explanation.

be found if we understand how an additional length scale in the stiffness alters the fluctuation-
induced repulsion. To this end consider a complete wetting transition occurring in a finite-size
three-dimensional geometry with short-ranged forces (see figure 6). The system is of infinite
extent in the y direction (say) but of finite width L much bigger than the bulk correlation
length. We may suppose that periodic boundary conditions apply across the system. In the
presence of a finite bulk field h the mean interface height is finite but diverges as h → 0
with the growth of the film thickness falling into two regimes. If the width L is larger than
the transverse correlation length ξ‖ ∼ h−ν‖(3) of a three-dimensional complete wetting layer
of infinite extent, then the film grows with 3D-like critical exponents. If, on the other hand,
L 
 ξ‖, the growth of the wetting layer thickness must be characterized by critical exponents
pertinent to 2D complete wetting. Standard finite-size scaling ideas imply that the crossover
between these regimes should emerge from the scaling hypothesis

l(L, h) = h−βco
s (3)�(Lhν‖(3)) (59)

where �(x) is an appropriate scaling function. In the limit x → ∞ the scaling function must
approach a constant consistent with the bulk 3D limit. On the other hand, as the argument
vanishes we must impose

�(x) ∼ x (β
co
s (3)−βco

s (2))/ν‖(3) (60)

in order to recover the correct 2D limit. Thus the asymptotic divergence of l as h → 0 contains
the finite-size dependence

l ∼ h−βco
s (2)L(β

co
s (3)−βco

s (2))/ν‖(3). (61)

This asymptotic divergence should also be understandable using a suitably modified effective
potential measuring the free energy per unit length of the finite-size system. As h → 0 the
interface behaves as a 2D-like complete wetting layer in an effective bulk field heff ∝ hL and
with modified stiffness 
eff ∝ 
L. The divergence of l should therefore follow from the
minimization of an effective 2D-like complete wetting potential

Weff (h, L) = (hL)l + AL−φl−τ(2) (62)
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where the exponent φ allows for the influence of the extra length scale dependence in the
effective stiffness. In order to recover the correct finite-size result (61) we must identify

φ = βco
s (2)− βco

s (3)

βco
s (2)ν‖(3)

+
1

βco
s (2)

− 2. (63)

This exponent is key to understanding the connection between interfacial wandering and
3D filling since it accounts for the correction to the standard fluctuation-induced repulsion at
wetting when the effective stiffness in the y direction contains an additional length
eff = 
L.
This is also the case at filling where the effective stiffness along the wedge is proportional to
the interfacial height lw. Simple power counting implies that the fluctuation-induced repulsion
exponent for the wedge is

τw = φ + τ (2) (64)

which reduces to

τw = 2(1 − ζ(3))

ζ(2)
− 1. (65)

In this way we can explicitly relate all the 3D wedge filling exponents in the FFL regime
to the values of the interfacial wandering exponent for 2D and 3D planar interfaces. Thus
lw ∼ ξ⊥ ∼ ξ

ζw
y with wedge wandering exponent

ζw = ζ(2)

(1 + ζ(2)− ζ(3))
(66)

which is valid provided that both the two- and three-dimensional interfaces are well-defined
and rough. That is the dimensionality must be such that d � du and d − 1 > dL. Similarly,
and subject to the same provisos, the critical exponent for the interfacial height reduces to

βw = ζ(2)

2(1 − ζ(3))
(67)

which is the central result of this section. The interpretation and implications of this result are
discussed in detail below.

5.3. Interpretation

For pure systems the wandering exponent has values ζ(2) = 1/2 and ζ(3) = 0 in two and
three dimensions respectively. Consequently (66) and (67) recover the effective Hamiltonian
predictions ζw = 1/3 and βw = 1/4 discussed earlier. Further support for the connection
between filling critical exponents and interfacial wandering arises when we generalize the
above discussion to the d-dimensional wedge with d − 2 dimensions along the direction of
translational invariance. The analysis is unchanged except that ζ(2) and ζ(3) are replaced by
ζ(d − 1) and ζ(d) respectively. Thus for a generalized wedge we predict

βw = ζ(d − 1)

2(1 − ζ(d))
(68)

provided that fluctuations are dominated by the (d − 2)-dimensional breather modes along the
wedge. Substituting in the thermal result ζ(d) = (3 − d)/2 recovers (17) for d < 3. For
d > 3, (68) is no longer valid since the d-dimensional interface is no longer rough. Notice
that, in the limit d → 2, (68) recovers the correct two-dimensional filling result βw = 1 even
though the breather-mode excitations are effectively zero-dimensional, and that ζ(1) = 1.

For impure systems we are able to make some new predictions for filling in random-bond
and random-field systems. For random-bond systems we use the values ζ(2) = 2/3 and
ζ(3) = 0.44 to predict that in the FFL regime

βw ≈ 0.60, ν⊥ ≈ 0.60, νy ≈ 1.1 (69)
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which are valid for sufficiently short-ranged forces. Assuming that there are only two
fluctuation regimes and that there is a smooth crossover from mean-field to fluctuation-
dominated exponents we anticipate the above predictions to be valid provided that the power
law for the intermolecular forces p > 1.7. Thus dispersion-like (van der Waals) forces are
irrelevant in the renormalization group sense and belong to the universality class of systems
with short-ranged forces. Note that the value of the fluctuation repulsion exponent τw is positive
for both pure and random-bond systems.

The case of 3D filling in systems with random-field disorder is less clear-cut. Using the
values ζ(2) = 1 and ζ(3) = 2/3 we are led to the predictions βw = ν⊥ = 3/2 and νy = 2.
However, some caution is required in assessing these predictions since the reliance on the
marginal value ζ(2) = 1 is somewhat unsatisfactory. This situation is reminiscent of the two-
dimensional limit of (68) for filling with thermal disorder which relies on the marginal value
ζ(1) = 1. The fact that the breather-mode picture generates the correct two-dimensional result
for this case lends some support to the above predictions for 3D random-field filling. However,
the situation is worse for random-field disorder since the fluctuation repulsion exponent τw

is negative for d < 10/3. It is likely therefore that the exponent identification (67) is not
appropriate for 3D wedge filling with random fields. Hereafter we limit our discussion to
thermal and random-bond disorder only.

The above results for the values of the critical exponents for fluctuation-dominated three-
dimensional wedge filling in pure and impure (random-bond) systems complement the known
result for two-dimensional filling (20). It is therefore interesting to ask how the three-
dimensional result (67) becomes the two-dimensional result as we compactify the wedge
and reduce the number of dimensions along it. For pure systems with only thermal disorder
the situation seems straightforward since the result (68) is valid for 2 � d � 3. As noted
above, the generalized breather-mode result smoothly recovers the correct numerical result
βw = 1 in this limit. There is however something remarkable about this since equating the
two expressions (20) and (68) implies ζ(2) = ζ(1)/2 yielding information about the allowed
value of the wandering exponent. Noting that the lower critical dimension for pure systems is
dL = 1 and that at this dimension ζ = 1, we may conclude that equality of the breather-mode
and wedge covariant results for the critical exponents necessitates that for thermal fluctuations

ζ(dL + 1) = 1
2 (70)

which is correct. Turning attention to random-bond systems however note that we are not
permitted to extend the breather-mode result down to d = 2 since the expression (68) is
not valid when d − 1 < dL = 5/3 equivalent to d < 8/3. Therefore we are not able to
equate distinct expressions for the filling critical exponents in two dimensions and are unable
to discuss the values of these exponents for 2 < d < 8/3. However, we are still free to discuss
the properties of the filling critical exponents as d → 8/3 from above. In particular, in view
of the thermal result (70), it is natural to enquire what the value of the wandering exponent is
for random-bond systems one dimension above the lower critical dimension. That is, what is
the value of ζ(8/3)? As discussed earlier, a reliable estimate for the value of the wandering
exponent is provided by the linear relation (54) which is only slightly below the exact result in
two dimensions. At d = 8/3 this yields ζ(8/3) ≈ 0.49 which we anticipate to be only slightly
below the true result. This remarkable numerical coincidence leads us to conjecture that (70)
is also valid for random-bond systems, so

ζ
(

8
3

) = 1
2 . (71)

It is natural to ask whether this conjecture has any support from other examples of fluctuating
surfaces. Lipowsky has considered interfacial wandering and unbinding within a generalized
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class of effective Hamiltonians with bending energy terms of the forms [15]

H [l] = K

2

∫
dk k2−η|l̃(k)|2 +

∫
dx W (l(x)) (72)

written in terms of the Fourier components of the collective coordinate. A remarkable property
of such models is that for η < 0 the fixed point behaviour (pertinent to short-ranged critical
unbinding [36]) is controlled by a single parameter rather than by η and d separately. For
our purposes we note only that the wandering exponent ζ(d) = (3 − d − η)/2 and that the
value at which this is unity allows us to identify dL = 1 − η. This immediately implies that
ζ(dL + 1) = 1/2, consistent with the known result for interfaces in pure systems and our
conjecture for interfaces subject to random-bond disorder. On the other hand, the result (70)
is not universally valid since for interfaces in random fields ζ = (5 − d)/3, implying
ζ(dL + 1) = 2/3. Further work is required to substantiate the conjecture (71) for random-bond
disorder.

6. Tilt and torsional mode fluctuations at wedge filling

In this final section we return to the problem of wedge filling in pure systems and reconsider
the transfer matrix analysis of the wedge Hamiltonian (9). Bednorz and Napiórkowski [37]
have pointed out that some ambiguities in the construction of the infinitesimal transfer matrix
arise because the bending energy term is proportional to the interfacial height. To avoid this
they propose that the fluctuating field or order parameter appearing in the partition function
functional integration is not l0(y) but rather z(y) = l0(y)3/2. The advantage of choosing this
field is clear, since the bending energy term is a simple Gaussian and one can map the problem
immediately onto Euclidean quantum mechanics. Here we point out that this choice of order
parameter emerges naturally when we consider the role of tilt and torsional fluctuations coupled
to breather-mode excitations.

Using the wedge Hamiltonian we wish to evaluate the partition function

Z(l1, l2; L) =
∫

Dl0 e−βHw[l0 ] (73)

for a wedge of length L with fixed interfacial heights l1 = l(0) and l2 = l(L) at the end points.
The measure Dl0 denotes some suitable integration over the allowed values of the collective
coordinate l(y) and will be discussed further below. The wedge model (9) was constructed
on the assumption that the only fluctuations that are relevant for filling correspond to local
translations in the height of the filled region. Let us generalize this and allow for small, local
tilts in the flat, filled region of the interface, that mimic the effect of the intrinsic capillary
fluctuations around the constrained profile. That is we consider a restricted class of interfacial
configurations, that within the filled region has the form

l(x, y) = l0(y) + φ(y)x; l(x, y) < α|x | (74)

provided that l(x, y) < α|x |. This is shown schematically in figure 7. The tilt angle is
assumed to lie in some interval −εα � φ � εα with 0 < ε < 1. We assume that outside
of the filled region the interface remains within a microscopic distance from the wall, so
l(x, y) ≈ α|x |. Substitution into the capillary-wave model leads to a wedge Hamiltonian that
allows for breather, tilt and torsional modes and is a functional of the two fields l0 and φ. It is
straightforward to show that the breather–tilt–torsional (BTT) model has the form

HBTT[l0, φ] =
∫

dy

{
K1

2
l0

(
dl0

dy

)2

+ K2l2
0φ

(
dl0

dy

)(
dφ

dy

)
+

K3

2
l3
0

(
dφ

dy

)2

+ V (l0, φ)

}
(75)
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Figure 7. A schematic picture of the tilt fluctuations of the filled region in a section of a 3D wedge.

where the generalized wedge potential is

V (l0, φ) = 


α
(θ2 − α2 + φ2)l0 + Cl1−p

0 . (76)

The bending energy coefficient for the breather mode K1 = 2

α

and is unchanged from the
simpler model (9). The coefficients appearing in the torsional terms are K2 ∝ 
α−2 and
K3 ∝ 
α−3 respectively. The precise values of these coefficients are not important in the
critical regime. It is also convenient to rewrite the wedge potential as

V (l0, φ) = tl0 + Cl1−p
0 +




α
φ2l0. (77)

Notice that when we set the field φ(y) = 0 at all points along the wedge, the BTT Hamiltonian
reduces to the wedge model (85). To assess the relevance of tilt and torsional modes in the
critical behaviour of the model we consider a rescaling of the coordinates and fields similar
to that discussed earlier. With the additional tilt field we now consider the properties of the
model under the mapping

y → y ′ = y

b
, l0 → l ′0 = l0

bζw
, φ → φ′ = φb2ζw (78)

where, as before, the wedge wandering exponent ζw = 1/3. Under this rescaling the coefficient
of the breather-modebending coefficient K1 and the termφ2l0 appearing in the wedge potential
remain invariant. The linear temperature-like scaling field t and Hamaker constant C rescale
as earlier (see (12)) whilst the new tilt and torsional bending energy coefficients renormalize
to

K ′
2 = b−4/3 K2, K ′

3 = b−4/3 K3 (79)

and are therefore irrelevant for all ranges of intermolecular force. This means that they do not
affect the critical behaviour and that the BTT model can be simplified to

HBTT[l0, φ] =
∫

dy

{

l0

α

(
dl0

dy

)2

+ V (l0, φ)

}
. (80)

The tilt field φ is therefore non-interacting but still coupled to the breather-mode excitations.
As the interface unbinds from the wedge bottom the tilt fluctuations become increasingly
massive and are suppressed. An important consequence of this is that when we integrate out
the tilt field the particular choice of the parameter ε becomes unimportant in the scaling limit.
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The final ingredient in the construction of the model is the nature of the measure Dl0 Dφ
appearing in the functional integration over the Boltzmann weight e−βHBTT[l,φ], where β ≡
1/kBT . In reducing the dimensionality of the collective coordinate l(x, y) → (l(y), φ(y))
some care is required in defining the new measure since we must impose the correct
normalization conditions. This is most easily illustrated for 2D wedge filling in which there
is no y direction and the choice of measure Dl0 Dφ relates only to one l and one φ variable.
For this case the Boltzmann weight for a tilt configuration is simply e−βV (l,φ) and determines
the unnormalized probability P(l0, φ) for finding an interface with tilt angle φ and mid-point
height l0. Integrating over the allowed values of φ determines the mid-point height PDF P(l0).
The properties of this PDF are known from exact calculations. In particular, for short-ranged
forces (belonging to the filling fluctuation regime) the function has the simple exponential
form P(l0) ∝ e−2β
(θ−α)l0 in the scaling limit. Thus we require that as θ → α

e−2β
(θ−α)l0 ∼
∫ εα

−εα
Dl0 dφ e−β
(θ 2−α2+φ2)l0/α (81)

which necessitates that we interpret the 2D measure Dl0 ∝ √
l0 dl0. In other words the correctly

normalized PDF P(l0, φ) ∝ √
l0e−βV (l,φ). An equivalent argument is that after integrating over

the tilt fluctuations the resulting PDF P(l0) must have the correct short-distance expansion as
the interface approaches the wall. For 2D systems with short-ranged forces the PDF has the
short-distance expansion P(l0) ∼ lγ0 with γ = 1/βw − 1. Recall that for pure systems βw = 1
(in 2D) implying that the two-field PDF P(l0, φ) must contain a

√
l0 prefactor in order to

preserve thermodynamic consistency. This argument is supported by explicit results for the
2D wedge filling for contact binding potentials (see the appendix).

A similar line of reasoning applies in higher dimensions. To determine the form of the 3D
measure we first focus on the filling transition occurring in a cone geometry. The reason for
this is that the breather-mode excitations are essentially zero-dimensional and we only have
one height variable lc measuring the height of the interface above the cone vertex. Up to a
normalization factor the probability of finding the interface at height l0 with tilt φ is determined
by the Boltzmann weight e−βVc where Vc is the free-energy cost of the configuration. The
leading order term in the cone binding potential contains a term proportional to the area l2

0 of
the filled region. The prefactor of this is β
(θ2 − α2 + φ2), similar to that for the 2D wedge,
and integrating over the tilt modes (and a trivial rotational degree of freedom) determines the
mid-point height PDF Pc(lc). In order to preserve the simple Gaussian form of this function
we must interpret the 3D measure Dlc ∝ lc dlc. For the 3D wedge we discretize the system
in the y direction and replace the fields {l(y)} and {φ(y)} by sets of continuous variables l j

and φ j . The wedge measure must be proportional to a product of cone measures and thus we
interpret the functional integral for the BTT Hamiltonian as∫

Dl0 Dφ ∝
∫ ∫ ∫ ∏

j

l0( j) dl0( j) dφ j. (82)

On integrating over each tilt angle we recover the wedge model (9) and identify the functional
integral appearing in (73) as the continuum limit of∫ ∫

· · ·
∫ ∏

j

l0( j)1/2 dl0( j). (83)

In terms of the variable z j = l0( j)3/2 the functional integral therefore becomes∫ ∫
· · ·

∫ ∏
j

dz( j) (84)
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and has a well-defined infinitesimal transfer matrix limit. In terms of the new variable the
continuum wedge Hamiltonian is

H̃w[z] =
∫

dy

{
4


9α

(
dz

dy

)2

+ Ṽ (z)

}
(85)

where Ṽ (z) ≡ V (z2/3, 0). The rest of the analysis is identical to that described by Bednorz
and Napiórkowski [37] and the problem can be mapped immediately onto quantum mechanics.
Thus the partition function may be written as the spectral expansion

Z(l1, l2; L) =
∑

n

ψn(l1)
∗ψn(l2)e

−βEn L (86)

where the eigenfunctions and eigenvalues satisfy the Schrödinger equation

− 9α

16β2

ψn(z)

′′ + Ṽ (z)ψn(z) = Enψn(z) (87)

with boundary conditions ψ(0) = ψ(∞) = 0. Hence the PDF for finding the interface
at height l0 can be identified with Pw(l0) = |ψ0(l3/2)|2 whilst the wedge free energy and
correlation length follow from fw = E0 and ξ−1

y = β(E1 − E0) respectively. For the choice
of wedge potential (10) it is straightforward to deduce the existence of two fluctuation regimes
with the critical exponents discussed earlier.

Our final remarks concern the form of the interfacial height PDF P(l0) in the FFL regime.
The intermolecular forces are irrelevant for p > 4 and in the limit θ → α the scaling properties
of the PDF follow from solution of the differential equation

− 9α

16β2

ψ0(z)

′′ + 2
(θ − α)z2/3ψ0(z) = E0ψ0(z). (88)

It follows immediately that the wavefunction and hence PDF are scaling functions of the
dimensionless variable u = √

β
(θ/α − 1)1/4l0 and we can write

P(l0) = √
β


(
θ

α
− 1

)1/4

g(
√
β
(θ/α − 1)1/4l0) (89)

where g(u) is a suitably normalized scaling function such that
∫

du g(u) = 1. The scaling of
the PDF is, of course, to be anticipated since in the FFL both lw and ξ⊥ diverge with the same
critical exponent. We are not aware of a closed form solution to the differential equation in
terms of elementary functions. However, both the asymptotic short-distance and large-distance
behaviours agree with thermodynamic and sum-rule requirements. First consider the large-
distance limit corresponding to u 	 1. From solution of (88) it is straightforward to show that
the PDF decays like

P(l0) ∼ √
β
(θ/α − 1)1/4e−2β


√
2(θ/α−1)l2

0 (90)

up to terms of order l0 in the argument. This is precisely in keeping with macroscopic
requirements. When the interface is far from the wall the PDF can be identified with e−βF

where F is the free-energy cost of a macroscopic configuration constrained to pass through
the height l0. In the wedge geometry this macroscopic configuration has the shape shown in
figure 7 and the free-energy cost is dominated by a thermodynamic area-like contribution. This
can be readily calculated making use of Young’s equation yieldingF = 2


√
2(θ − α)/αl2

0 .
The short-distance expansion (SDE) of the scaling function g(u) corresponding to the limit
u 
 1 is also consistent with known critical exponent relations. For 2D and 3D wedge filling
the scaling function for the PDF has the short-distance behaviour

g ∼ uγ (91)
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Figure 8. The rescaled probability distribution function for the interfacial height above the wedge
bottom found from the breather-mode model. Integration of the PDF determines the density profile
in the wedge.

where the SDE critical exponent γ = 1/βw − 1. This exponent relation follows from rather
general sum-rule and scaling arguments. Thus for 3D filling in pure systems with βw = 1/4
we anticipate

P(l0) ∼ (β
)2
(
θ

α
− 1

)
l3
0 (92)

for
√
β
(θ/α − 1)1/4l0 
 1. This emerges naturally from the solution to the Schrödinger

equation since in terms of the z variableψ(z) ∼ z as z → 0 and recall that P(l0) = |ψ(l3/2
0 )|2.

The large-distance and SDE properties of the PDF give strong support for the correctness of
the one-dimensional wedge Hamiltonian model. The numerically determined scaling form of
the PDF found from solution to the Schrödinger equation is shown in figure 8.

7. Conclusions

In this paper we have addressed a number of issues pertaining to 3D wedge filling transitions.
We began with a discussion of wedge covariance relations between filling and critical wetting
and showed that the fluctuation-induced covariance observed for 2D filling has a mean-field
analogue. Similar to the 2D case, classical covariance appears to be specific to systems for
which the critical wetting specific heat exponentαs = 0. Numerical studies of mean-field filling
within a Landau theory show that classical covariance is not limited to the shallow wedge limit.
Importantly this provides a constraint on the possible form of effective Hamiltonian models of
wedge filling and implies that a model suggested by Rejmer et al [7] is not consistent with more
microscopic approaches. It is likely that in order to capture the correct classical covariance for
wetting and filling it will be necessary to construct non-local interfacial models. This will be
discussed elsewhere.

In the second part of our paper we turned attention to fluctuation effects at 3D wedge
filling. Our central new result is that the critical exponents which characterize the fluctuation-
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dominated regime can be related to the values of the standard wandering exponent for planar
interfaces in 2D and 3D (bulk) systems. The expressions for βw and the wedge wandering
exponent ζw expressed in terms of ζ(2) and ζ(3) are rather general and allow the discussion
of filling in systems with random-bond disorder. A surprising feature emerging from our
study concerns some intriguing numerical coincidences for the value of the bulk wandering
exponent ζ(d) as one approaches the lower marginal dimension for wedge filling in pure and
random-bond systems. In particular we are led to conjecture that for random-bond disorder
ζ(8/3) = 1/2.

In the final part of our paper we addressed some queries that have been highlighted
concerning the pseudo-one-dimensional wedge Hamiltonian theory of 3D filling in pure
systems. Bednorz and Napiórkowski [37] have suggested that these can be avoided if one
supposes that the fluctuating field is not the interfacial height l0(y) above the wedge bottom but
l0(y)3/2. We showed that this choice indeed emerges naturally if one considers the coupling
between tilt and torsional fluctuations described by a second field φ(y) and breather-mode
excitations of l0(y). The form of the PDF for the interfacial height predicted by the wedge
Hamiltonian model is shown to have the correct short-distance and large-distance behaviour
dictated by macroscopic arguments and critical exponent relations. We believe that this strongly
supports the internal consistency of the effective wedge Hamiltonian model. As mentioned in
the introduction the values of the critical exponents predicted by the wedge Hamiltonian are in
very good agreement with Ising model simulation studies. A more stringent test of the theory
would be to study the scaling of the interfacial height PDF. This can be readily extracted from
Ising model studies since it corresponds to the derivative of the magnetization profile measured
along the vertical above the wedge bottom. To do this quantitatively it would be necessary
to generalize the present theory to study the finite-size scaling of the PDF and magnetization
profile in the same geometry as studied by Milchev et al [13, 14]. This will be a topic of future
work.

Finally we mention that ideally one would hope to circumvent the entire wedge
Hamiltonian theory and replace it with a more microscopic approach. In particular it would
be extremely useful if one could apply a renormalization group analysis to derive the wedge
filling critical exponents from the full capillary-wave model (7). To do this one would have to
identify a new fixed point distinct from the Gaussian (or strong-fluctuation regime) fixed point
used to study wetting transitions. Such additional fixed points for the capillary-wave model
may exist if one generalizes the spatial rescaling to account for the anisotropy of correlation
lengths across and along the wedge. One would hope, of course, that such an approach would
lead to the same predictions for universal critical exponents and scaling functions as found
using the effective one-dimensional wedge Hamiltonian. As well as being an independent
check on the validity of the wedge Hamiltonian model (in the scaling limit) such an approach
would also shed much light on the emergence of an effective one-dimensional theory from a
higher-dimensional model.
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Figure A.1. A plot of the typical relative interfacial position l̃ ≡ l − α|x| close to the 2D wedge
filling transition. θ1 and θ2 define the tilt fluctuations of the interface at x∗. See the text for an
explanation.

Appendix. Tilt mode fluctuations at 2D wedge filling

In this appendix we provide further explanation for the role played by tilt fluctuations at 2D
wedge filling making contact with exact results obtained from interfacial Hamiltonian studies.
We restrict attention to systems with short-ranged forces corresponding to the FFL regime
and set kBT = 1 for convenience. Consider the three-point probability distribution function
Pw(l1,−x; l0, 0; l2, x) determining the probability for finding the interface at heights l1, l0

and l2 at positions −x , 0 and x , respectively. Exact transfer matrix results for a continuum
interfacial model of filling in shallow wedges show that Pw(l1,−x; l0, 0; l2, x) decomposes
into the product [38]

Pw(l1,−x; l0, 0; l2, x) = Pw(l0)P
c
π (l̃1, x |l0, 0)Pc

π (l̃2, x |l0, 0) (A.1)

where Pw(l0) = 2
(θ − α) exp[−2
(θ − α)l0] is the wedge mid-point one-point PDF,
l̃ = l − αx is the local height relative to the wall (recall that x is positive) and Pc

π (l2, x2|l1, x0)

is the planar conditional probability distribution function [38]:

Pc
π (l2, x |l1, 0) =

√



2πx
e− 
(l2−l1 +θx)2

2x + e−2
θ l2

[√



2πx
e− 
(l1+l2−θx)2

2x

+ 
θ erfc

(√



2πx
(l1 + l2 − θx)

)]
. (A.2)

If the wedge mid-point height is much greater than the mean wetting height for a planar
substrate, i.e. l0 	 1/2
θ , which is fulfilled in the asymptotic critical regime and the
position x < l0/θ , the second term in equation (A.2) can be neglected and the conditional
probability distribution function becomes a Gaussian distribution of average l0 − θx and
dispersion σ 2 = x/
. The interface will be affected by the presence of the substrate when
l0 − θx ∼ √

x/
. This expression defines the effective value of x∗ at which the interface is
in contact with the substrate. We consider the angle formed by the horizontal and the line that
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joins the interface position at the mid-point and the position (relative to the substrate) at x∗
(see figure A.1). The tilt angles θ1 and θ2 are defined as the departures of the previously
defined angles with respect to the average value θ . We stress that the interface is not considered
stiff but is allowed to wander due to capillary-wave fluctuations. However, the length scale on
which these fluctuations occur is much smaller than the one that characterizes the constrained
profile. When θ1,2 
 θ 
 1, then l1,2 − l0 + θx∗ ≈ x∗θ1,2.

Under these assumptions, the PDF for a wedge mid-point position l0 and tilt angles θ1

and θ2 can be approximated as

P(l0,θ1,θ2) ≈ 2
(θ − α)e−2
(θ−α)l0 
x∗

2π
e− 
x∗

2 [(θ1)
2+(θ2)

2] (A.3)

where the tilt angle ranges can be extended safely to the complete real axis. We define the tilt
angles φ and φ′ as (θ1 +θ2)/2 and (θ1 −θ2)/2, respectively. Taking into account that
in the scaling limit x∗ ≈ l0/θ ≈ l0/α, equation (A.3) can be expressed as

P(l0, φ, φ
′) ≈ 2
3/2

√
l0√

πα
(θ − α)e− 
l0

α
[2α(θ−α)+φ2]

√

l0

πα
e− 
l0 (φ

′ )2
α . (A.4)

Integrating all the values of φ′, we obtain

P(l0, φ) ≈ 2
3/2
√

l0√
πα

(θ − α)e− 
l0
α

[2α(θ−α)+φ2] ≈ 2
3/2
√

l0√
πα

(θ − α)e− 
l0
α
(θ 2−α2+φ2) (A.5)

in agreement with equation (81) and with the correct measure Dl0 ∼ √
l0 dl0.
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